
Chem 108: Lab Week 12

Sign in **Alcohol Distillation** To do with your Fermentation partner: Turn in 7-Solution Report form **Post Lab Questions**

7 Solutions Report pp. 76-80 & Post Lab Questions **Due Today**

Seven Solutions Post Lab Questions http://chemconnections.org/general/chem120/solutions-mixes.108.html QUESTION

Solutions: molarity & volume \rightarrow mass

How many grams of NaCl are contained in 350. mL of a 0.250 M solution of sodium chloride?

A) 41.7 g B) 5.11 g C) 14.6 g

D) 87.5 g

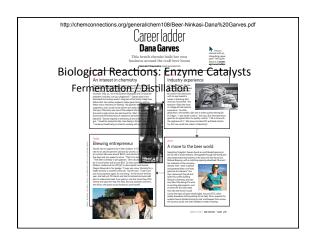
E) None of these

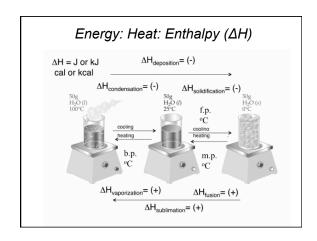
ANSWER

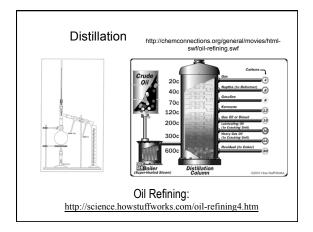
B) 5.11 g

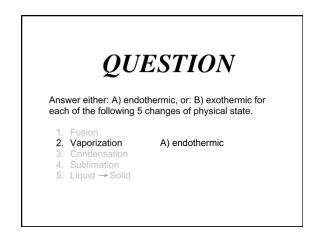
Seven Solutions Post Lab Questions http://chemconnections.org/general/chem120/solutions-mixes.108.html

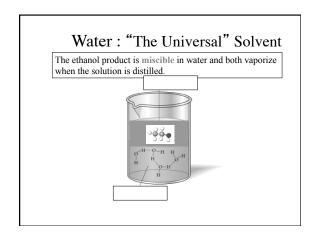
Volume (L) times concentration (mol/L) gives moles. Moles are then converted to grams multiplying by the molar mass.


Chemical Reactions


To DO Today Separating the Ethanol Produced Fermentation / Distillation pp.63-67




http://www.piney.com/BabNinkasi.html)



Distillation involves heating.

How could distillation be done @ lower temperatures?

| Interior Light Constitute | Interior | Inter

Theoretical & Percent Yield

http://chemconnections.org/general/movies/htmlswf/oil-refining.swf

While the distillate is cooling weighs became by value and open email beaker and record the mass, Octam a 2 of ze 3 ft. apple (each potters beak blue as val size email beaker and each pursurer must use a different volume) and rises in throughly with decincted water. Dress distillates into the pipel to the distillate of the distillate of the distillates of the distillates of the distillates in the distillates of the distillate in the distillate of the distillate (depending on the volume time with distillate and return in to the flush. Papt 2 00 or 27 mil. of distillates (depending on the volume of your pipel; into the weight of vial and one vial or into a small backer. Weight the vial or beaker and content and record the mass. If your density and your pursure's don't appreciate which 0.05 (y) and all report the procedure. When you have two or dismits that apper, record you pursure's desirely and

The ethanol produced in the fermentation is distilled along with the water used. The liquid collected is ethanol mixed in with the water, which is the solvent. The amount dissolved will be calculated by experimentally de

What is a solution's concentration?

Solution Concentrations

Concentration is a measure of the amount of solute dissolved.

molarity = M = moles solute liters solution

Some other common units include percentage by mass, percentage by volume, (which relates to alcoholic proof), parts per million, parts per billion, and molality. The definition of each provides the basis for calculations with that unit.

% by mass = $\frac{\text{mass solute}}{\text{mass solution}} \times 100$ % by volume = $\frac{\text{volume solute}}{\text{volume solution}} \times 100$

arts per million = ppm = $\frac{\text{mass solute}}{\text{mass solution}} \times 10^{\circ}$

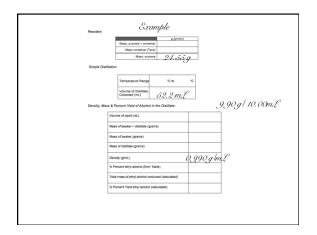
arts per billion = ppb = $\frac{\text{mass solute}}{\text{mass solution}} \times 10^9$

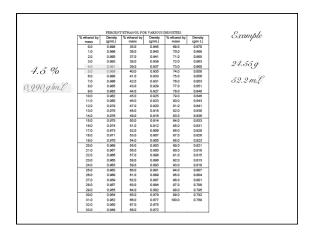
 $molality = m = \frac{moles\ solute}{kilograms\ solvent}$

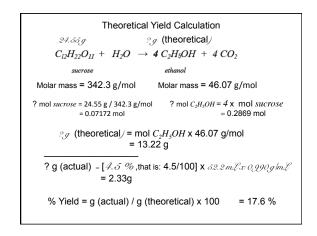
Solution Concentrations

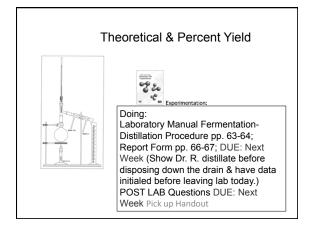
♦ Concentration in mass percent is common.

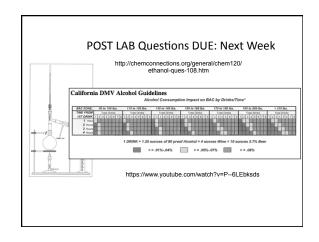
Mass % = Mass solute / [Mass solute + Mass solvent] x100


♦ What is the mass % of 65.0 g of glucose dissolved in 135 g of water?


Mass % = 65.0 g / [65.0 + 135] g x 100= 32.5 %




		PERCEN	T ETHANOL FOR	R VARIOUS	DENSITIES	
	% ethanol by	Density	% ethanol by	Density	% ethanol by	Density
% Ethanol from	mass	(g/mL)	mass	(g/mL)	mass	(p/mL)
	0.0	0.998	35.0	0.945	69.0	0.870
	1.0	0.996	36.0	0.943	70.0	0.868
	2.0	0.995	37.0	0.941	71.0	0.865
	3.0	0.993	38.0	0.939	72.0	0.863
	4.0	0.991	39.0	0.937	73.0	0.860
	5.0	0.989	40.0	0.935	74.0	0.858
	6.0	0.988	41.0	0.933	75.0	0.856
	7.0	0.986	42.0	0.931	76.0	0.853
	8.0	0.985	43.0	0.929	77.0	0.851
	9.0	0.983	44.0	0.927	78.0	0.848
	10.0	0.982	45.0 46.0	0.925	79.0	0.846
	12.0	0.980	47.0	0.923	81.0	0.841
	13.0	0.978	47.0	0.920	82.0	0.841
	14.0	0.976	49.0	0.916	83.0	0.836
	15.0	0.975	50.0	0.914	84.0	0.833
	16.0	0.974	51.0	0.912	85.0	0.831
Density	17.0	0.973	52.0	0.909	85.0	0.828
	18.0	0.971	53.0	0.907	87.0	0.826
	19.0	0.970	54.0	0.905	88.0	0.823
	20.0	0.969	55.0	0.903	89.0	0.821
	21.0	0.967	56.0	0.900	90.0	0.818
	22.0	0.966	57.0	0.898	91.0	0.815
	23.0	0.965	58.0	0.896	92.0	0.813
	24.0	0.963	59.0	0.893	93.0	0.810
	25.0	0.962	60.0	0.891	94.0	0.807
	26.0	0.960	61.0	0.889	96.0	0.804
	27.0	0.959	62.0	0.887	96.0	0.801
	28.0	0.957	63.0	0.884	97.0	0.798
	29.0	0.955	64.0	0.882	98.0	0.795
	30.0	0.954	65.0	0.879	99.0	0.792
	31.0	0.962	66.0	0.877	100.0	0.789
	32.0	0.960	67.0	0.875		
	33.0	0.949	68.0	0.872		
	34.0	0.947				


Determination of Percent Yield	
of ethanol. From the balanced equation for	ohol of the distillate, calculate the actual yield in grams r the reaction, given in the background, and the mass of al yield. Finally, calculate the percent that the actual yield
$C_{l2}H_{22}O_{II} + H_2O$	$O \rightarrow 4 C_2 H_5 OH + 4 CO_2$
sucrose	ethanol
	- 6 66

